56=1/2a2^a=

Simple and best practice solution for 56=1/2a2^a= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 56=1/2a2^a= equation:



56=1/2a^2^a=
We move all terms to the left:
56-(1/2a^2^a)=0
Domain of the equation: 2a^2^a)!=0
a!=0/1
a!=0
a∈R
We get rid of parentheses
-1/2a^2^a+56=0
We multiply all the terms by the denominator
56*2a^2^a-1=0
Wy multiply elements
112a^2-1=0
a = 112; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·112·(-1)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{7}}{2*112}=\frac{0-8\sqrt{7}}{224} =-\frac{8\sqrt{7}}{224} =-\frac{\sqrt{7}}{28} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{7}}{2*112}=\frac{0+8\sqrt{7}}{224} =\frac{8\sqrt{7}}{224} =\frac{\sqrt{7}}{28} $

See similar equations:

| ?x?=56 | | b2+4b-21=0 | | 56=1/2a2^ | | m2+2m-35=0 | | 4^x-6=4 | | 1-z/2=2+z/3 | | n2-2n-24=0 | | P=B/1+k | | -(x+-7)=-6x+8 | | 1/x=0.1042 | | 9w+3-4w=-13 | | y/(16/9)=3/4 | | 4s=8-2s+1 | | 5t-3(9t+6)=0 | | s÷3-4=2 | | 2a=4.6 | | 4x(2x+3)=56 | | 2(4w+5)=80 | | x+0.1x=114700 | | 2-6(-3x+2)=-100 | | 1=k-12 | | 5=7g+4-3g | | 3x+5x+7x=135 | | 7+6x=8x+5 | | 147=3(7+7x) | | 9+x=15-9x | | 11=1—3a+2 | | 3.7+2.75k=28.35 | | -2x-3(3x+5)=-103 | | .9x=1100 | | -180=6(2-4x) | | Y=3x—10 |

Equations solver categories